Quantification of Uncertainty from High-dimensional Scattered Data via Polynomial Approximation
نویسنده
چکیده
This paper discusses a methodology for determining a functional representation of a random process from a collection of scattered pointwise samples. The present work specifically focuses onto random quantities lying in a high-dimensional stochastic space in the context of limited amount of information. The proposed approach involves a procedure for the selection of an approximation basis and the evaluation of the associated coefficients. The selection of the approximation basis relies on the a priori choice of the high-dimensional model representation format combined with a modified least angle regression technique. The resulting basis then provides the structure for the actual approximation basis, possibly using different functions, more parsimonious and nonlinear in its coefficients. To evaluate the coefficients, both an alternate least squares and an alternate weighted total least squares methods are employed. Examples are provided for the approximation of a random variable in a high-dimensional space as well as the estimation of a random field. Stochastic dimensions up to 100 are considered, with an amount of information as low as about 3 samples per dimension, and robustness of the approximation is demonstrated with respect to noise in the dataset. The computational cost of the solution method is shown to scale only linearly with the cardinality of the a priori basis and exhibits a (Nq), 2 ≤ s ≤ 3, dependence with the number Nq of samples in the dataset. The provided numerical experiments illustrate the ability of the present approach to derive an accurate approximation from scarce scattered data even in the presence of noise.
منابع مشابه
Adaptive Polynomial Dimensional Decompositions for Uncertainty Quantification in High Dimensions
The main theme of this paper is intelligently derived truncation strategies for polynomial dimensional decomposition (PDD) of a high-dimensional stochastic response function commonly encountered in engineering and applied sciences. The truncations exploit global sensitivity analysis for defining the relevant pruning criteria, resulting in two new adaptive-sparse versions of PDD: (1) a fully ada...
متن کاملUncertainty quantification of high-dimensional complex systems by multiplicative polynomial dimensional decompositions
The central theme of this paper is multiplicative polynomial dimensional decomposition (PDD) methods for solving high-dimensional stochastic problems. When a stochastic response is dominantly of multiplicative nature, the standard PDD approximation, predicated on additive function decomposition, may not provide sufficiently accurate probabilistic solutions of a complex system. To circumvent thi...
متن کاملA least-squares approximation of partial differential equations with high-dimensional random inputs
Uncertainty quantification schemes based on stochastic Galerkin projections, with global or local basis functions, and also stochastic collocation methods in their conventional form, suffer from the so called curse of dimensionality: the associated computational cost grows exponentially as a function of the number of random variables defining the underlying probability space of the problem. In ...
متن کاملApproximate approximations from scattered data
The aim of this paper is to extend the approximate quasi-interpolation on a uniform grid by dilated shifts of a smooth and rapidly decaying function on a uniform grid to scattered data quasi-interpolation. It is shown that high order approximation of smooth functions up to some prescribed accuracy is possible, if the basis functions, which are centered at the scattered nodes, are multiplied by ...
متن کاملStochastic Collocation Methods via ℓ1 Minimization Using Randomized Quadratures
In this work, we discuss the problem of approximating a multivariate function by polynomials via `1 minimization method, using a random chosen sub-grid of the corresponding tensor grid of Gaussian points. The independent variables of the function are assumed to be random variables, and thus, the framework provides a non-intrusive way to construct the generalized polynomial chaos expansions, ste...
متن کامل